МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Департамент общего образования томской области Управление образования Администрации Томского района МАОУ Моряковская СОШ Томского района

 СОГЛАСОВАНО
 УТВЕРЖДЕНО

 Заместитель директора
 Директор

 по УВР
 Суворова Т.Г.

 Колегова О.Г.
 Приказ № 132 от

 «З1» августа 2020 г.
 «З1» августа 2020 г.

РАБОЧАЯ ПРОГРАММА основного общего образования по курсу "Астрономия" для 11 класса

(количество часов 34)

Составители: методическое объединение учителей математики, физики, информатики

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа составлена в соответствии с приказом Министерства образования и науки Российской Федерации от 7 июня 2017 года № 506 «О внесении изменений в федеральный компонент государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования», утвержденный приказом Министерства образования Российской Федерации от 5 марта 2004 г. № 1089, вводится стандарт среднего (полного) общего образования по астрономии, с использованием программы Астрономия. Базовый уровень. 11 класс Е. К. Страут.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта на базовом уровне, дает распределение учебных часов по разделам в соответствии с учебным планом 1 учебный час в неделю 34 часа в год.

Курс построен на основе базовой программы. Преподавание ведется по учебнику: Астрономия. Базовый уровень. 11 класс: учебник / Б.А. Воронцов — Вельяминов, Е.К. Страут. 5-е изд., пересмотр. М.: Дрофа, 2018. — 238.

1.1. Состав УМК.

- 1. Воронцов-Вельяминов Б. А., Страут Е. К.: Астрономия. Базовый уровень. 11 класс: учебник / Б.А. Воронцов Вельяминов, Е.К. Страут. 5-е изд., пересмотр. М.: Дрофа, 2018. 238.
- 2. Е.К.Страут Методическое пособие к учебнику «Астрономия. Базовый уровень.11 класс» авторов Б. А. Воронцова-Вельяминова, Е. К. Страута, М. Дрофа, 2020.

1.2. Общая характеристика учебного предмета.

Астрономия в российской школе всегда рассматривалась как курс, который, завершая физико-математическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной.

1.3. Цели и задачи программы

Целями изучения астрономии на данном этапе обучения являются:

- осознание принципиальной роли астрономии в познании фундаментальных законов природы и формировании современной естественнонаучной картины мира;
- -приобретение знаний о физической природе небесных тел и систем, строении и эволюции Вселенной, пространственных и временных масштабах Вселенной, наиболее важных астрономических открытиях, определивших развитие науки и техники;
- -овладение умениями объяснять видимое положение и движение небесных тел принципами определения местоположения и времени по астрономическим объектам, навыками практического использованиякомпьютерных приложений для определения вида звездного неба в конкретном пункте для заданного времени;
- развитие познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний по астрономии сиспользованием различных источников информации и современных информационных технологий;

- использование приобретенных знаний и умений для решения практических задач повседневной жизни;
- формирование научного мировоззрения;
- -формирование навыков использования естественнонаучных и особенно физико математических знаний для объективного анализа устройства окружающего мира на примере достижений современной астрофизики, астрономии и космонавтики.

Учебный предмет «Астрономия» направлен на формирование у учащихся естественнонаучной картины мира, познавательных интересов, интеллектуальных и творческих способностей. Он играет важную роль в становлении гражданской позиции и патриотическом воспитании выпускников, так как Россия занимает лидирующие позиции в мире в развитии астрономии, космонавтики и космофизики.

Задача астрономии заключается в формировании у обучающихся естественнонаучной грамотности как способности человека занимать активную гражданскую позицию по вопросам, связанным с развитием естественных наук и применением их достижений, а также в его готовности интересоваться естественнонаучными идеями.

Современный образованный человек должен стремиться участвовать в аргументированном обсуждении проблем, относящихся к естественным наукам и технологиям, что требует от него следующих компетентностей:

- -научно объяснять явления;
- -понимать основные особенности естественнонаучного исследования;
- -интерпретировать данные и использовать научные доказательства для получения выводов.

2. Планируемые результаты изучения учебного предмета.

2.1. Личностными результатами освоения курса астрономии в средней (полной) школе являются:

- -формирование умения управлять своей познавательной деятельностью, ответственное отношение к учению, готовность и способность к саморазвитию и самообразованию, а также осознанному построению индивидуальной образовательной деятельности на основе устойчивых познавательных интересов;
- -формирование познавательной и информационной культуры, в том числе навыков самостоятельной работы с книгами и техническими средствами информационных технологий;
- формирование убежденности в возможности познания законов природы и их использования на благо развития человеческой цивилизации;
- формирование умения находить адекватные способы поведения, взаимодействия и сотрудничества в процессе учебной и внеучебной деятельности, проявлять уважительное отношение к мнению оппонента в ходе обсуждения спорных проблем науки.

2.2. Метапредметные результаты освоения программы предполагают:

- находить проблему исследования, ставить вопросы, выдвигать гипотезу, предлагать альтернативные способы решения проблемы и выбирать из них наиболее эффективный, классифицировать объекты исследования, структурировать изучаемый материал, аргументировать свою позицию, формулировать выводы и заключения;
- анализировать наблюдаемые явления и объяснять причины их возникновения;
- на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, мысленного эксперимента, прогнозирования;
- выполнять познавательные и практические задания, в том числе проектные;

- извлекать информацию из различных источников (включая средства массовой информации и интернет-ресурсы) и критически ее оценивать;
- готовить сообщения и презентации с использованием материалов, полученных из Интернета и других источников.

2.3. Предметные результаты изучения астрономии в средней (полной) школе представлены в содержании курса по темам.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знанияне передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в основной школе является включение учащихся в учебно-исследовательскую и проектную деятельность, которая имеет следующие особенности:

- 1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;
- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности. В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

2.4. Критерии и нормы оценки знаний, умений и навыков обучающихся по астрономии.

В результате изучения астрономии на базовом уровне ученик должен знать/понимать

-смысл понятий: активность, астероид, астрология, астрономия, астрофизика, атмосфера, болид, возмущения, восход светила, вращение небесных тел, Вселенная, вспышка, Галактика, горизонт, гранулы, затмение, виды звезд, зодиак, календарь, космогония, космология, космонавтика, космос, кольца планет, кометы, кратер, кульминация, основные точки, линии и плоскости небесной сферы, магнитная буря, Метагалактика, метеор, метеорит, метеорные тело, дождь, поток, Млечный Путь, моря и материки на Луне, небесная механика, видимое и реальное движение небесных тел и их систем, обсерватория, орбита, планета, полярное сияние, протуберанец, скопление. созвездия И их классификация, солнечная солнцестояние, состав Солнечной системы, телескоп, терминатор, туманность, фазы Луны, фотосферные факелы, хромосфера, черная дыра, Эволюция, эклиптика, ядро; определения физических величин: астрономическая единица, афелий, блеск звезды, возраст небесного тела, параллакс, парсек, период, перигелий, физические характеристики планет и звезд, их

химический состав, звездная величина, радиант, радиус светила, космические расстояния, светимость, световой год, сжатие планет, синодический и сидерический период, солнечная активность, солнечная постоянная, спектр светящихся тел Солнечной системы; смысл работ и формулировку законов: Аристотеля, Птолемея, Галилея, Коперника, Бруно, Ломоносова, Гершеля, Браге, Кеплера, Ньютона, Леверье, Адамса, Галлея, Белопольского, Бредихина, Струве, Герцшпрунга-Рассела, Хаббла, Доплера, Фридмана, Эйнштейна;

уметь:

- использовать карту звездного неба для нахождения координат светила; выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования астрономических знаний о небесных телах и их системах;
- решать задачи на применение изученных астрономических законов; осуществлять самостоятельный поиск информации естественнонаучного содержания с использованием различных источников, ее обработку и представление в разных формах;
- владеть компетенциями: коммуникативной, рефлексивной, личностного саморазвития, ценностно-ориентационной, смыслопоисковой, и профессионально-трудового выбора.

Необходимость общего астрономического образования обусловлена тем, что знание основ современной астрономической науки дает возможность учащимся:

- понять сущность повседневно наблюдаемых и редких астрономических явлений;
- познакомиться с научными методами и историей изучения Вселенной; получить представление о действии во Вселенной физических законов, открытых в земных условиях, и единстве мегамира и микромира
- осознать свое место в Солнечной системе и Галактике;
- ощутить связь своего существования со всей историей эволюции Метагалактики;
- выработать сознательное, отношение к активно внедряемой в нашу жизнь астрологии и другим оккультным (эзотерическим) наукам, постоянно апеллирующим к Космосу.

Количественные отметки за уровень освоения курса, предмета выставляются вбальной системой оценивания: «2» - неудовлетворительно, «3» - удовлетворительно, «4» - хорошо и «5» - отлично.

<u>Оценка «5»</u> ставится в том случае, если учащийся показывает верное пониманиефизической сущности рассматриваемых явлений и закономерностей, законов и теорий, а так же правильное определение физических величин, их единиц и способов измерения;правильно выполняет чертежи, схемы и графики; строит ответ по собственному плану,

сопровождает рассказ собственными примерами, умеет применять знания в новой ситуациипри выполнении практических заданий; может установить связь между изучаемым и ранееизученным материалом по курсу физики, а также с материалом, усвоенным при изучениидругих предметов.

<u>Оценка «4»</u> ставится, если ответ ученика удовлетворяет основным требованиям наоценку «5», но дан без использования собственного плана, новых примеров, без применениязнаний в новой ситуации, без использования связей с ранее изученным материалом иматериалом, усвоеннымпри изучении др. предметов; если учащийся допустил одну ошибкуили не более двух недочётов и может их исправить самостоятельно или с небольшойпомощью учителя.

«3» ставится, если учащийся правильно понимает физическую <u>Оценка</u> сущностьрассматриваемых явлений и закономерностей, но в ответе имеются отдельные пробелы вусвоении вопросов курса физики, не препятствующие дальнейшему усвоению вопросовпрограммного материала; умеет применять полученные знания при решении простых готовых затрудняется сиспользованием формул, но при решении требующихпреобразования некоторых формул, допустил не более одной грубой ошибки и двухнедочётов, не более одной грубой и одной негрубой ошибки, не более 2-3 негрубых ошибок, одной негрубой ошибки и трёх недочётов; допустил 4-5 недочётов.

 \underline{O} ставится, если учащийся не овладел основными знаниями и умениями всоответствии с требованиями программы и допустил больше ошибок и недочётов чем необходимо для оценки «3».

Оценка контрольных работ

Оценка «5» ставится за работу, выполненную полностью без ошибок и недочётов.

 \underline{O} иенка «4» ставится за работу выполненную полностью, но при наличии в ней неболее одной грубой и одной негрубой ошибки и одного недочёта, не более трёх недочётов.

<u>Оценка «З»</u> ставится, если ученик правильно выполнил не менее 2/3 всей работы илидопустил не более одной грубой ошибки и двух недочётов, не более одной грубой ошибки иодной негрубой ошибки, не более трех негрубых ошибок, одной негрубой ошибки и трехнедочётов, при наличии 4 - 5 недочётов.

<u>Оценка «2»</u> ставится, если число ошибок и недочётов превысило норму для оценки «3»или правильно выполнено менее 2/3 всей работы.

Оценка лабораторных работ

Оценка «5» ставится, если учащийся выполняет работу в полном объеме с

соблюдением необходимой последовательности проведения опытов и измерений; самостоятельно и рационально монтирует необходимое оборудование; все опыты проводит вусловиях и режимах, обеспечивающих получение правильных результатов и выводов; соблюдает требования правил безопасности труда; в отчете правильно и аккуратновыполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильновыполняет анализ погрешностей.

<u>Оценка «4»</u> ставится, если выполнены требования к оценке «5», но было допущенодва - три недочета, не более одной негрубой ошибки и одного недочёта.

Оценка «З» ставится, если работа выполнена не полностью, но объем

выполненной части таков, позволяет получить правильные результаты и выводы: еслив ходе проведения опыта и измерений были допущены ошибки.

Оценка «2» ставится, если работа выполнена не полностью и объем

выполненной части работы не позволяет сделать правильных выводов: если опыты, измерения, вычисления, наблюдения производились неправильно.

Во всех случаях оценка снижается, если ученик не соблюдал требования правилбезопасности труда.

Оценка тестовых работ учащихся

«5» - 85% - 100%

«4» - 65% - 84%

«3» - 41% - 64%

«2» - 21% - 40%

«1» - 0% - 20%

Перечень ошибок:

Грубые ошибки

- -Незнание определений основных понятий, законов, правил, положений теории, формул, общепринятых символов, обозначения физических величин, единицу измерения.
- -Неумение выделять в ответе главное.
- -Неумение применять знания для решения задач и объяснения физических явлений; неправильно сформулированные вопросы, задания или неверные объяснения хода их решения, незнание приемов решения задач, аналогичных ранее решенным в классе; ошибки, показывающие неправильное понимание условия задачи или неправильное истолкование решения.
- -Неумение читать и строить графики и принципиальные схемы
- -Неумение подготовить к работе установку или лабораторное оборудование, провести опыт, необходимые расчеты или использовать полученные данные для выводов.
- -Небрежное отношение к лабораторному оборудованию и измерительным приборам.
- -Неумение определить показания измерительного прибора.
- -Нарушение требований правил безопасного труда при выполнении эксперимента.

Негрубые ошибки

-Неточности формулировок, определений, законов, теорий, вызванных неполнотой ответа основных признаков определяемого понятия. Ошибки, вызванные несоблюдением условий проведения опыта или измерений.

Ошибки в условных обозначениях на принципиальных схемах, неточности чертежей, графиков, схем.

- -Пропуск или неточное написание наименований единиц физических величин.
- -Нерациональный выбор хода решения.

Недочеты

- -Нерациональные записи при вычислениях, нерациональные приемы вычислений, преобразований и решения задач.
- -Арифметические ошибки в вычислениях, если эти ошибки грубо не искажают реальность полученного результата.
- -Отдельные погрешности в формулировке вопроса или ответа.
- -Небрежное выполнение записей, чертежей, схем, графиков.
- -Орфографические и пунктуационные ошибки

Тематическое планирование и содержание курса «Астрономия».

№ урока	Тема/Глава	Кол-во часов	Содержание курса	Тематический контроль
1-2	Тема 1.Астрономия, ее назначение и связь с другими науками.	2	Роль астрономии в развитии цивилизации. Эволюция взглядов человека на Вселенную. Геоцентрическая и гелиоцентрическая системы. Особенности методов познания в астрономии. Практическое применение астрономических исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю.А. Гагарина. Достижения современной космонавтики. Демонстрации. 1.портреты выдающихся астрономов; 2.изображения объектов исследования в астрономии.	Тест
3-7	Тема 2. Практические основы астрономии	5	Звезды и созвездия. Звездные карты, глобусы и атласы. Видимое движение звезд на различных географических широтах. Кульминация светил. Видимое годичное движение Солнца. Эклиптика. Движение и фазы Луны. Затмения Солнца и Луны. Время и календарь. Демонстрации. 1. географический глобус Земли; 2. глобус звездного неба; 3. звездные карты; 4. звездные каталоги и карты; 5. карта часовых поясов; 6. модель небесной сферы; 7. разные виды часов (их изображения); 8. теллурий.	Практическая работа
8-14	Тема 3. Строение Солнечной системы	7	Развитие представлений о строении мира. Геоцентрическая система мира. Становление гелиоцентрической системы мира.	Практическая работа

			Конфигурации планет и условия их видимости. Синодический и сидерический (звездный) периоды обращения планет. Законы Кеплера. Определение расстояний и размеров тел в Солнечной системе. Горизонтальный параллакс. Движение небесных тел под действием сил тяготения. Определение массы небесных тел. Движение искусственных спутников Земли и космических аппаратов в Солнечной системе. Демонстрации. 1. динамическая модель Солнечной системы; 2. изображения видимого движения планет, планетных конфигураций; 3. портреты Птолемея, Коперника, Кеплера, Ньютона; 4. схема Солнечной системы; 5. фотоизображения Солнца и Луны во время затмений	
15-22	Тема 4.Природа тел Солнечной системы	8	Солнечная система как комплекс тел, имеющих общее происхождение. Земля и Луна — двойная планета. Ис-следования Луны космическими аппаратами. Пилотируемые полеты на Луну. Планеты земной группы. Природа Меркурия, Венеры и Марса. Планеты-гиганты, их спутники кольца. Малые тела Солнечной системы: астероиды, планеты-карлики, кометы, метеороиды. Метеоры, болиды и метеориты. Демонстрации. 1. глобус Луны; 2. динамическая модель Солнечной системы; 3. изображения межпланетных космических аппаратов; 4. изображения объектов Солнечной системы; 5. космические снимки малих тел Солнечной системы; 6. космические снимки планет Солнечной системы; 7. таблицы физических и орбитальных характеристик планет Солнечной системы; 8. фотография поверхности Луны.	Практическая работа

23-27	Тема 5.Солнце и звезды	5	Излучение и температура Солнца. Состав и строение Солнца. Источник его энергии. Атмосфера Солнца. Солнечная активность и ее влияние на Землю. Звезды — далекие солнца. Годичный параллакс и расстояния до звезд. Светимость, спектр, цвет и температура различных классов звезд. Диаграмма «спектр—светимость». Массы и размеры звезд. Модели звезд. Переменные и нестационарные звезды. Цефеиды — маяки Вселенной. Эволюция звезд различной массы. Демонстрации. 1. диаграмма Герцшпрунга — Рассела; 2. схема внутреннего строения звезд; 3. схема внутреннего строения Солнца; 4. схема эволюционных стадий развития звезд на диаграмме Герцшпрунга — Рассела; 5. фотографии активных образований на Солнце, атмосферы и короны Солнца; 6. фотоизображения взрывов новых и сверхновых звезд; 7. фотоизображения Солнца и известных звезд.	Практическая работа
28-31	3-31 Тема 6. Строение и эволюция Вселенной 4		Наша Галактика. Ее размеры и структура. Два типа населения Галактики. Межзвездная среда: газ и пыль. Спиральные рукава. Ядро Галактики. Области звездообразования. Вращение Галактики. Проблема «скрытой» массы. Разнообразие мира галактик. Квазары. Скопления и сверхскопления галактик. Основы современной космологии. «Красное смещение» и закон Хаббла. Нестационарная Вселенная А. А. Фридмана. Большой взрыв. Реликтовое излучение. Ускорение расширения Вселенной. «Темная энергия» и антитяготение. Демонстрации. 1. изображения радиотелескопов и космических аппаратов, использованных для поиска жизни во Вселенной; 2. схема строения Галактики; 3. схемы моделей Вселенной;	

			4. таблица - схема основных этапов развития Вселенной;	
			5. фотографии звездных скоплений и туманностей;	
			6. фотографии Млечного Пути;	
			7. фотографии разных типов галактик.	
32	Тема 7. Жизнь и разум во вселенной.	1	Проблема существования жизни вне Земли. Условия, необходимые для развития жизни. Поиски жизни на планетах Солнечной системы. Сложные органические соединения в космосе. Современные возможности космонавтики радиоастрономии для связи с другими цивилизациями. Планетные системы у других звезд. Человечество заявляет о своем существовании.	
33-34	Обобщение(резерв)	2	Подведение итогов.	зачет

Календарно - тематическое планирование.

№	Тема	Кол-во	Тематическое содержание урока.	Неделя	Дата	ПО	Дата	ПО
урока		часов			плану		факту	
1-2	Астрономия, ее назначение	2	1. Что изучает астрономия.	1				
	и связь с другими науками.		2.Наблюдения – основа астрономии	2				
3-7	Практические основы	5	3. Звезды и созвездия. Небесные координаты. Звездные карты.	3				
	астрономии		4.Видимое движение звезд на различных географических широтах.	4				
			5.Годичное движение Солнца. Эклиптика.	5				
			6.Движение и фазы Луны.	6				
			7. Затмения Солнца и Луны. Время и календарь.	7				

8-14	Строение	7	8. Развитие представлений о строении мира.	8	
	Солнечной системы		9.Конфигурации планет.	9	
]	Системы		10.Синодический период	10	
			11. Законы движения планет Солнечной системы.	11	
			12.Определение расстояний и размеров тел в Солнечной Системе.	12	
			13.Открытие и применение закона всемирного тяготения.	13	
			14. Движение искусственных спутников и космических аппаратов (КА) в Солнечной системе.	14	
15-22	Природа тел Солнечной системы	8	15.Солнечная система как комплекс тел, имеющих общее Происхождение.	15	
			16.Земля и Луна - двойная планета.	16	
			17.Две группы планет.	17	
		18.Природа планет земной группы	18.Природа планет земной группы	18	
			19. Урок-дискуссия «Парниковый эффект - польза или вред?»	19	
			20.Планеты-гиганты, их спутники и кольца.	20	
			/	21	
			22.Метеоры, болиды, метеориты.	22	
23-27	Солнце и звезды	5	23.Солнце, состав и внутреннее строение.	23	
		24.Co.	24.Солнечная активность и ее влияние на Землю.	24	
				25. Физическая природа звезд.	25

			26.Переменные и нестационарные звезды.	26	
			27. Эволюция звезд.	27	
28-31	Строение и эволюция	4	28.Наша Галактика.	28	
	Вселенной		29.Другие звездные системы — галактики.	29	
			30.Космология начала XX в.	30	
			31.Основы современной космологии.	31	
32	Строение и эволюция Вселенной	1	32.Урок - конференция «Одиноки ли мы во Вселенной?»	32	
33-34	Обобщение (резерв).	2	33.Итоговый зачет по курсу Астрономия.11 класс	33	
			34.Резерв	34	